资源名称:量化投资 数据挖掘技术与实践(MATLAB版) 完整版pdf
第一篇基础篇
第1章绪论 2
1.1 量化投资与数据挖掘的关系 2
1.1.1 什么是量化投资 2
1.1.2 量化投资的特点 3
1.1.3 量化投资的核心——量化模型 5
1.1.4 量化模型的主要产生方法——数据挖掘 7
1.2 数据挖掘的概念和原理 8
1.2.1 什么是数据挖掘 8
1.2.2 数据挖掘的原理 10
1.3 数据挖掘在量化投资中的应用 11
1.3.1 宏观经济分析 11
1.3.2 估价 13
1.3.3 量化选股 14
1.3.4 量化择时 14
1.3.5 算法交易 15
1.4 本章小结 16
参考文献 16
第2章数据挖掘的内容、过程及工具 17
2.1 数据挖掘的内容 17
2.1.1 关联 17
2.1.2 回归 19
2.1.3 分类 20
2.1.4 聚类 21
2.1.5 预测 22
2.1.6 诊断 24
2.2 数据挖据过程 25
2.2.1 数据挖掘过程概述 25
2.2.2 挖掘目标的定义 26
2.2.3 数据的准备 26
2.2.4 数据的探索 28
2.2.5 模型的建立 30
2.2.6 模型的评估 34
2.2.7 模型的部署 35
2.3 数据挖掘工具 36
2.3.1 MATLAB 36
2.3.2 SAS 37
2.3.3 SPSS 38
2.3.4 WEKA 40
2.3.5 R 41
2.3.6 工具的比较与选择 42
2.4 本章小结 43
参考文献 44
第二篇技术篇
第3章数据的准备 47
3.1 数据的收集 47
3.1.1 认识数据 47
3.1.2 数据挖掘的数据源 49
3.1.3 数据抽样 50
3.1.4 量化投资的数据源 51
3.1.5 从雅虎获取交易数据 53
3.1.6 从大智慧获取财务数据 56
3.1.7 从Wind获取高质量数据 57
3.2 数据质量分析 59
3.2.1 数据质量分析的必要性 59
3.2.2 数据质量分析的目的 60
3.2.3 数据质量分析的内容 60
3.2.4 数据质量分析的方法 61
3.2.5 数据质量分析的结果及应用 66
3.3 数据预处理 67
.......
资源截图:
暂停服务!